Comité de Seguimiento

Tecnologías de IA aplicadas al sector eléctrico

Contenidos

- Ol Mapa general de Tecnologías IA investigadas
- O2 Datos usados para la I+D de estas técnicas IA
- Detalle de la investigación en algunas de las tecnologías
 - Incertidumbres y deriva de concepto en la predicción.
 - Redes Neuronales Informadas con Modelos Físicos.
 - Modelos subrogados para la optimización.
 - Optimización Metaheurística Multiobjetivo.
 - Generación de datos sintéticos (IA generativa).
 - Paradigmas Cloud/Edge (virtualización) y Algoritmos Verdes.
 - Federated Machine Learning, Espacios de datos y PoC.
- O4 Resumen/Conclusiones

01 Mapa de Tecnologías IA Investigadas

Euclidean distances/k means

Support Vector Machines

Extreme Learnig Machines

Random Forest

Markov chains

XGBoost, Gradient Boosting, Huber regressor

Surrogated Models

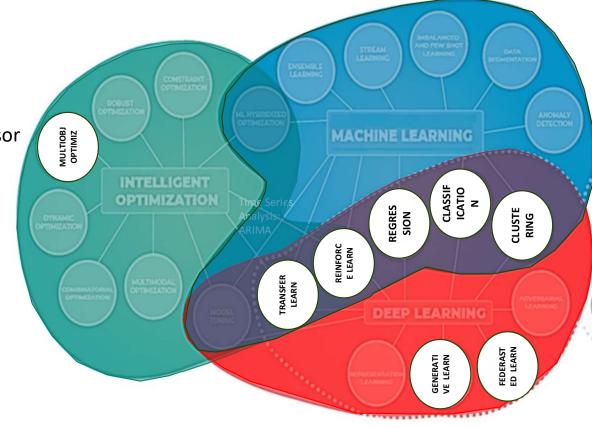
Physics Informed Neural Networks (PINN)

Concept Drift in prediction

Uncertainties in prediction

Transfer Optimization

Evolutionary Multitask Transfer


Optimization

Evolutionary Algortihm/NSGA-II

Uncertainties in Optimization

Generative Adversarial Networks (GAN)

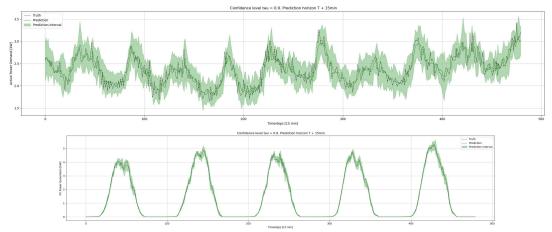
Multi-task multi-head AutoEncoder

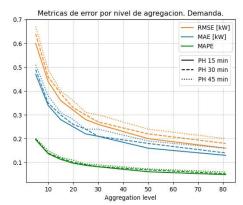
02 Datos usados para la I+D de estas técnicas IA (1/2)

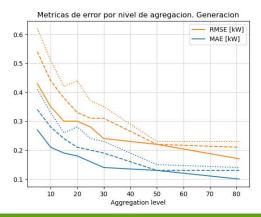
	Actividades	Datos propios (S=Sí/N=No)	Open (O) o Privados (P)	Disponibles a terceros (S=Sí C=Condicionado N=No)	Generará datos sintéticos? (S=Sí N=No)	Breve descripción
Nowcasting -Predicción corto plazo	4.4 y 4.13	N	0	S	N	Datos open de diferentes bases de datos disponibles en internet de consumos/generación de prosumidores en intervalos de adquisición de unos pocos minutos en horizontes temporales de más de un año.
Concetpt Drift (Deriva de Concepto)	3.13	N	Р	С	S	Características físicas de diseño aerogeneradores doblemente alimentados y de imnanes permanentes. Datos privados de operación (SCADA, Monitorización de la condición) de parques cedidos por un propiestarios de parques eólicos para desarrollos de I+D+i.
	4.4.	N	0	S	N	Datos open de diferentes bases de datos disponibles en internet de consumos/generación de prosumidores en intervalos de adquisición de unos pocos minutos en horizontes temporales de más de un año.
Generative Adversarial networks GANs	3.13	S	Р	С	N	Características físicas de diseño aerogeneradores doblemente alimentados y de imnanes permanentes. Datos privados de operación (SCADA, Monitorización de la condición) de parques cedidos por un propiestarios de parques eólicos para desarrollos de I+D+i.
Transfer Learning (Aprendizaje Transferido)	3.3.	N	0	S	N	Red de distribución de Baja Tensión y características físicas Open
Aprendizaje Reforzado (Reinforment Learning)	3.4, 5.1.	S	0	С	S	Datos de simulación (Open Modelica, ejemplo edificio 20 salas, modelo HVAC con 50 equipos). Optimización de políticas de actuación en el control de sistemas inteligentes. Los datos son adquiridos de forma online mediante simulaciones sucesivas.
Subrogación de modelos multifísicos	3.4, 5.1	S	Р	С	S	Datos de simulación (Open Modelica, ejemplo edificio 20 salas, modelo HVAC con 50 equipos). Estimación dinámica y optimizada en recursos computacionales mediante IA de la flexibilidad energética de un edificio frente a condiciones ambientales reales actuando
Optimización metaheurística	3.3.	N	0	S	N	Red de distribución de Baja Tensión y características físicas Open
	5.4.	S	Р	С	N	Datos de consumos eléctricos y de sistema de climatización de edificios terciarios propios.
Aprendizaje Federado (Federated Learning)	3.3	N	0	S	N	Red de distribución de Baja Tensión y sus características físicas Open.
	5.4.	S	Р	С	N	Datos de consumos eléctricos y de sistema de climatización (bombas de calor y de UTAs) de edificios terciarios propios.

02 Datos usados para la I+D (2/2)

- i-DE ha lanzado el i-DS, que es un Data Space de datos para Colaboradores en los que se desarrollan diferentes Casos de Uso:
 - 1. Predicción de la demanda.
 - 2. Procesado de imágenes para caracterización de activos.
 - 3. Detección de Autoconsumo Fotovoltaico.
 - 4. Localización de pérdidas no técnicas.
 - 5. Descubrimiento de la topología de red.
- Además, algunos Socios del Proyecto IA4TES hemos tenido acceso a datos de esos CdUs para nuestra investigación IA4TES.

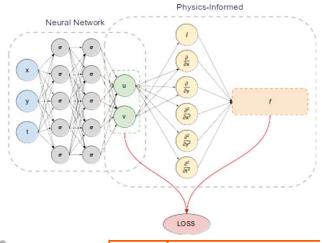


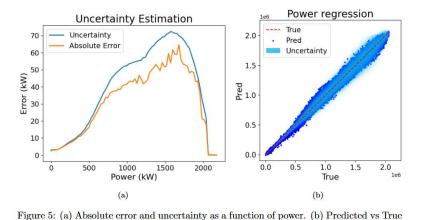


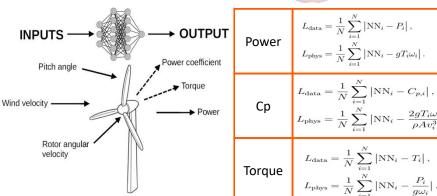

03 Detalles (1/8). Incertidumbres y deriva de concepto en problemas de predicción de la demanda eléctrica.

- Precisión altamente dependiente del nivel de agregación.
- Intervalos de predicción atenúan el error en las predicciones, aseguramos con confianza τ.
- · Mejores métricas: PH 15 mins:
 - Demanda: MAE = 0,13 kW, RMSE = 0,16 kW, MAPE = 4,9%. Mean Interval Length = 0,78 kW.
 - Generación: MAE = 0,10 kW, RMSE = 0,17, MAPE = 6,6%. Mean Interval Length = 0,49 kW.

• Fermín Rodríguez, Jesús L. Lobo, Ibai Laña, Verónica Álvarez, Eugenio Perea, "Intrahour interval forecasting with concept drift application for electric energy demand at residential level", *Energy Journal*, Elsevier(en revisión) / IA4TES





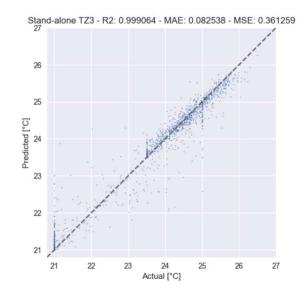

03 Detalles (2/8). Physics Informed Neural Networks (PINN).

values of power, along with the associated uncertainty $(\pm 3\sigma)$, for the test set.

También se han incluido capas de incertidumbre al estudio.

	NN_Cp		PINN_Cp		NN_T		PINN_T		NN_P		PINN_P	
	Data	Phys	Data	Phys	Data	Phys	Data	Phys	Data	Phys	Data	Phys
MAE (kW)	15.341	15.122	15.375	14.513	15.797	14.399	15.431	14.601	15.363	15.173	15.545	14.543
RMSE (kW)	27.770	27.856	27.940	26.967	28.511	26.901	27.898	27.144	27.785	27.967	28.016	26.946
MAPE (%)	3.63	3.63	3.70	3.40	3.92	3.33	3.72	3.37	3.64	3.63	3.84	3.44
R2	0.9961	0.9962	0.9960	0.9964	0.9959	0.9964	0.9960	0.9963	0.9961	0.9961	0.9960	0.9964

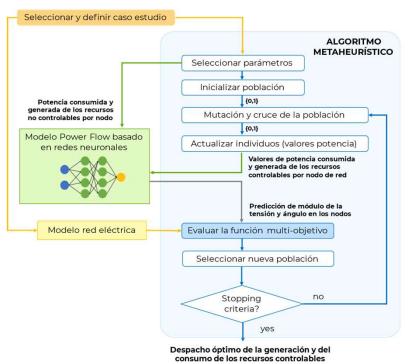
Alfonso Gijón, Ainhoa Pujana-Goitia, Eugenio Perea, Miguel Molina-Solana, Juan Gómez-Romero, "Prediction of wind turbines power with physics-informed neural networks and evidential uncertainty quantification", Engineering Applications of Artificial Intelligence, (en revisión) / IA4TES

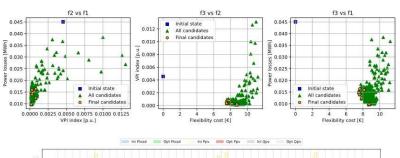


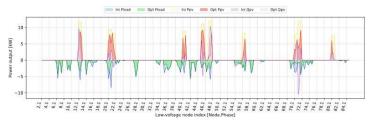
03 Detalles (3/8). Modelos subrogados para la optimización.

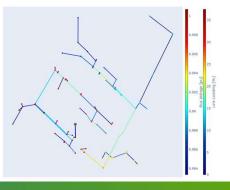
- Investigación sobre mejora en tiempos de computación y precisión de los modelos subrogados, frente a modelos de simulación.
- Aplicación en caso de uso de control HVAC en edificios con varias estancias.
- Estudio del método Active Learning con Gaussian Process.
- Ante la limitación de los regresores Gaussianos de no introducir errores al subrogar un modelo que contiene discontinuidades, se han estudiado otros regresores frente a diferentes métricas.

 Iker Landa del Barrio, María Fernández-Vigil Iglesias, Antonis Peppas, Jan L. Bruse, Juan B. Echeverría Trueba and Carlos Fernández Bandera, "Ensemble Surrogate modeling of a Real-Time HVAC Set-Point Optimization Framework for PV Self-Consumption Maximization" Energy and Buildings / IA4TES





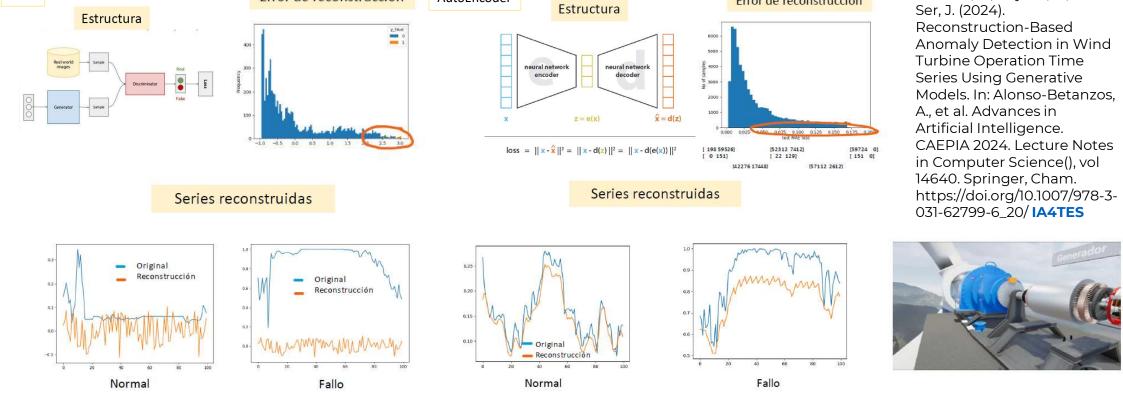




03 Detalles (4/8). Optimización Metaheurística Multiobjetivo.

- A. González-Garrido, J. A. Rivera, J. F. Zaballa, J. E. Rodríguez-Seco and E. Perea, "Neural Network Power Flow Approach to Detect Overload and Voltage Anomalies in Low-Voltage Unbalanced Networks, Agnostic of Network Topology," 2024 20th International Conference on the European Energy Market (EEM), Istanbul, Turkiye, 2024, pp. 1-6, doi: 10.1109/EEM60825.2024.1060897
- A. González-Garrido, A. González-González, J. Florez, "Speed-Enhanced Metaheuristic Multi-Objective Power Flow Optimization using Neural Network-Based State Estimation in Unbalanced Low Voltage" International Journal of Electrical Power & Energy Systems, (en preparación) / IA4TES

9 / **IA4TES**

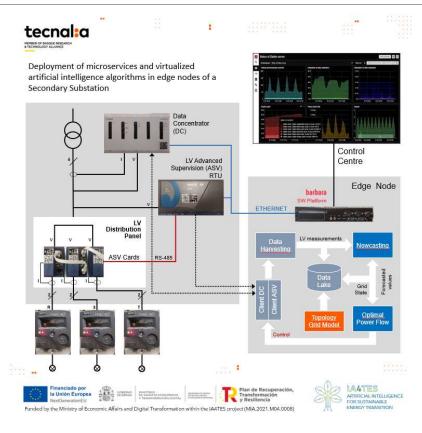


03 Detalles (5/8). Generación de datos sintéticos (IA generativa).

GAN

AutoEncoder

Error de reconstrucción

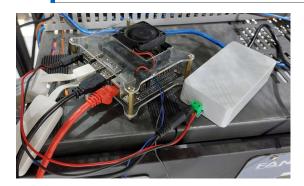


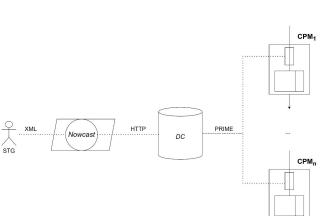
Error de reconstrucción

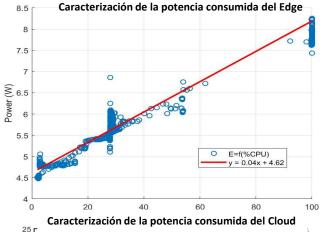
· Abanda, A., Pujana, A., Del

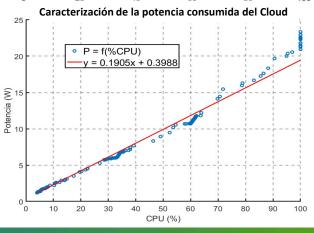
03 Detalles (6/8). Paradigmas Cloud/Edge (virtualización).

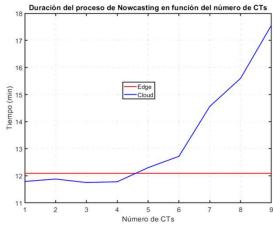
https://www.linkedin.com/posts/tecnalia-researchinnovation_paraeds-ia4tesprojectartificialintelligence-ugcPost-7135979858173583360-OBd6?utm_source=share&utm_medium=member_d esktop

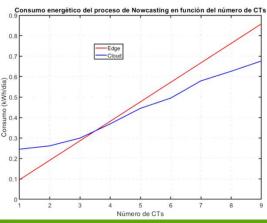


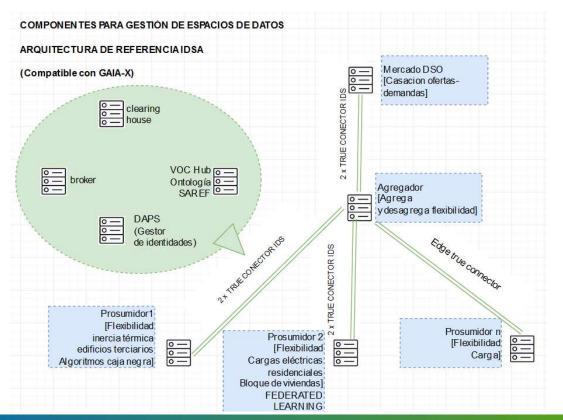







03 Detalles (7/8). Paradigmas Cloud/Edge. Algoritmos Verdes.



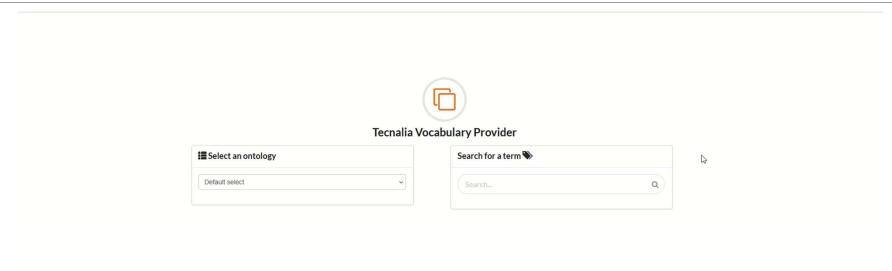


Detalles (8/8). Federated Machine Learnig, Espacios de datos y PoC.

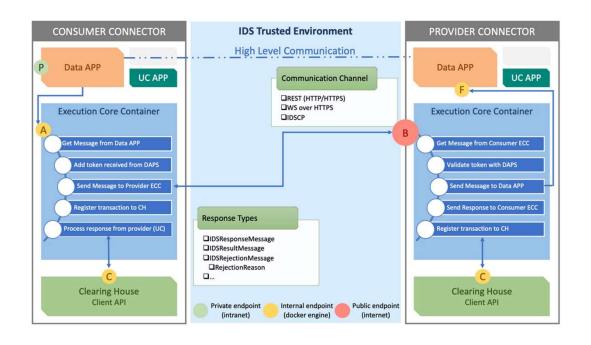
SAREF Extension for Smart Grids

Video PoC VOC Hub

Video PoC transferencia de datos con gobernanza

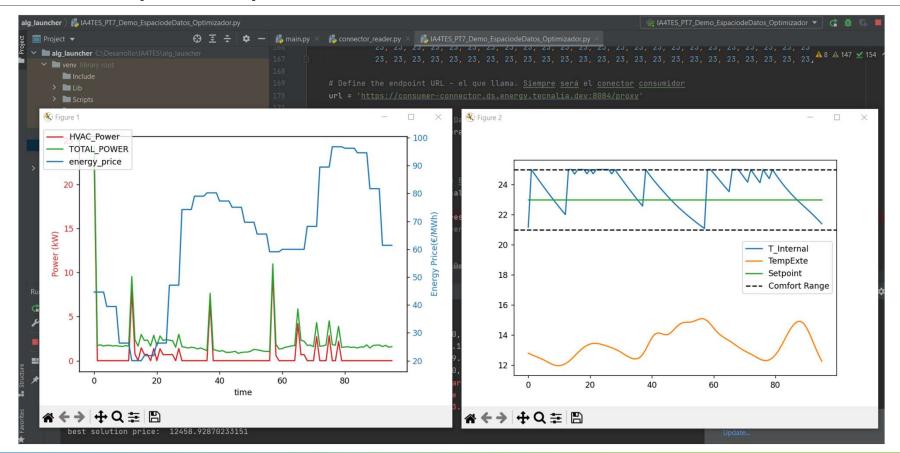


03 Detalles (8.1/8.3). Espacios de datos y PoGideo Poc Voc Hub



Detalles (8.2/8.3). Espacios de datos y PoCdatos con gobernanza

Estructura interna conector



03 Detalles (8.3/8.3). Gestión de la demanda en el Consumidor.

Resumen/Conclusiones

- El proyecto IA4TES ha posibilitado una investigación TRL<=4 de la IA en cuanto a:
 - Algoritmia Machine Learning para la resolución de problemas del sector eléctrico que tienen difícil o limitada solución con resoluciones deterministas.
 - Benchark de métodos de resolución en términos de tiempos de computación y métricas de precisión,
 - Explorado límites de evaluación de los algoritmos,
 - En diferentes arquitecturas de resolución: Cloud-Edge, IA centralizada, distribuida (Federated ML).
 - Considerando una amplia diversidad de casos de uso en el sector eléctrico, tanto en la entrada de datos origen de la investigación, como implementabilidad futura en negocio.

