

Comité de Seguimiento

Presentación de resultados

O1 Resumen actividades Minsait

• Alcance, retos y resultados

Planificación y agregación optima de recursos distribuidos en mercados de flexibilidad

- Agregación de flexibilidad.
- Gestión optima de la flexibilidad en mercados

O3 Las claves para la transformación IA

Al mapa completo de actividades Minsait

PT5 Nuevos servicios/nuevos agentes

5.7 Optimización local 'Behind-themeter'

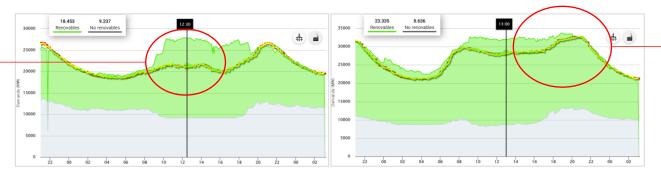
7.4 Aprendizaje federado

PT7 Gestión coordinada y segura de la IA

7.4 Seguridad y cumplimiento Al

MINSAIT

Planificación y agregación optima de recursos distribuidos en mercados de flexibilidad

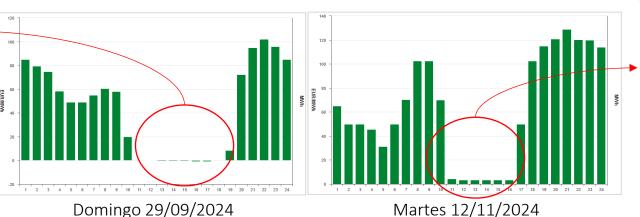


¿Qué es la flexibilidad de la demanda y por qué es necesaria?

La flexibilidad de la demanda es la capacidad de modificar la curva de demanda ante una señal externa

Excedente renovable

La generación disponible en las horas centrales del día supera a la demanda, provocando *curtailment*, y suponiendo una barrera a una mayor integración de renovables



Curva de pato

La famosa curva representa un pico de consumo a final de las tardes, en un período de transición de alto consumo renovable a la entrada de tecnologías de punta, con una rampa de generación difícil de gestionar

Precios cero o negativos

La entrada de altos porcentajes de renovable precio cero provoca anomalías en el mercado, llegando a tener que pagar por generar.

Rentabilidad inversiones / Estabilización de precios

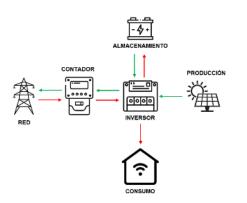
Estas señales de precio hacen inviables las nuevas inversiones en generación y retrasan la adopción de nuevas tecnologías distribuidas.

Sistema Peninsular. Fuentes: REE, OMIE

Surge una **oportunidad para la prestación de nuevos servicios innovadores al consumidor** por parte de comercializadoras, ESCOs y Agregadores

La gestión de la flexibilidad conecta a la demanda con los mercados y la operación del sistema servicios

Objetivos **Específicos** Generales Funciones TI de negocio en el nuevo paradigma Autonomía energética Rol proactivo del consumidor Rentabilidad de las inversiones Descarbonización del sistema distribuido Oferta diferencial / innovadora Estabilidad de la red Operación de Mercado Mercados Mayoristas y de Balance Operador Operador Servicios de flexibilidad Locales Red Mercados flexibility Gestión de la Flexibilidad Energética Activos de onesal Red de Agregación Activos de **Transport** Red de Energéticos **Smart Energy** Distribuidos Distribuci **Community Planner Planificación** y Operación **Activos Delante-Activos Detrás-Del**de Red de AT Del-Contador v Local Planificación Contador y Gran Industriay Operación Generación · 樂 **Energéticas Optimización Local** de Red de Activos Gestión de Energía y Baterías MT/BT del Cliente **Distribuidas**



Optimización de Activos Energéticos para el segmento comercial

El reto

Generalizar modelos capaces de abstraerse de las particularidades físicas de cada instalación

- Integración soft con Onesait Flexibility
- Integración hard / Digitalización del edificio
- Entrenamiento, ejecución y escalado
- Operar activos / reemplazar EMS

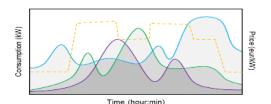
La solución

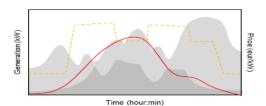
- Gemelos Digitales como orquestadores de los grupos de decisión y consiguiente toma de decisiones
- Previsión de consumos (Perceptrón multi-capa / Regresión)
- Previsión de generación (Modelo físico)
- Estimación de programa de carga y descarga de la batería
- Modelo de optimización (Lineal / Temple simulado)

Programación y operación óptima de la batería mediante almacenamiento de excedentes, arbitraje de precios y restricciones operativas del ciclo de vida

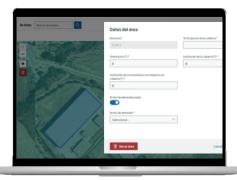
Resultados

- Validación de cálculos teóricos con +/- 1%
- Ahorros de entre el 2-4%
- Reducción relevante del retorno de la inversión
- Posibilidad de incorporar activos flexibles adicionales (clima, vehículo eléctrico)
- Detección de ineficiencias en la gestión energética
- Fuerte dependencia del dimensionamiento de las instalaciones



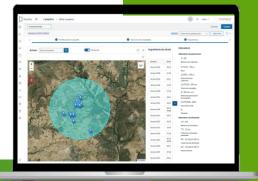

Planificador Inteligente de Comunidades Energéticas Urbanas

El reto


Facilitar autoconsumos colectivos con un dimensionamiento óptimo desde el diseño

- Toma de decisiones basada en datos
- Alineamiento de curvas de consumo agregadas, generación y precios
- Barreras administrativas / Engagement de usuarios

La solución

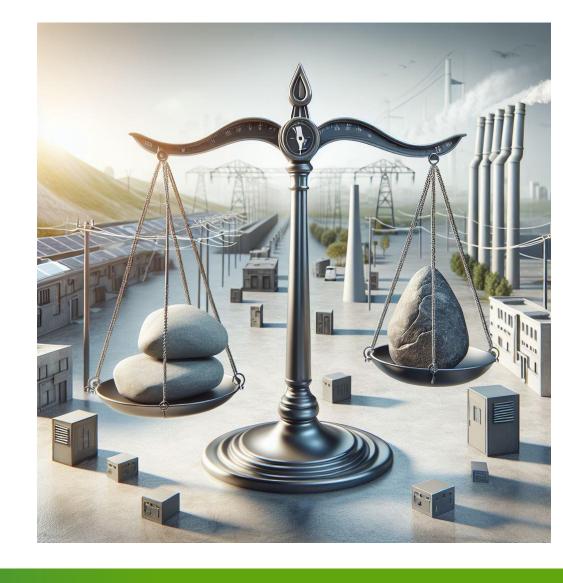

Herramienta de diseño de campañas comerciales, a partir de la geolocalización de clientes, características físicas de la instalación de generación y parámetros de ahorro

La solución principal consta de dos componentes:

- un clasificador, que agrupa clientes próximos en tipologías definidas por su consumo, producción y estructura de tarifa,
- un sistema de búsqueda meta-heurística, que selecciona el número de participantes y coeficiente óptimo por tipología

Resultados

- Automatización del proceso de diseño de autoconsumos colectivos
- Indicadores de potencial fotovoltaico, cobertura de demanda y autoconsumo
- Minimización del coste de suministro / Minimización de los vertidos a red
- Reducción de los períodos de retorno de la inversión
- Aumento del consumo local de energía
- Aplazamiento de inversiones en redes
- Cálculo óptimo y automatizado de coeficientes de reparto / Acceso a módulo de operación de la comunidad energética.



Gestión de la flexibilidad en mercados

La Inteligencia Artificial aporta valor en la mejora de previsiones, la optimización y coordinación de los recursos, agilizando la toma de decisiones en mercados cada vez más volátiles

Previsión de precios, demanda y generación

Mediante el análisis de datos
históricos y pronósticos
meteorológicos se mejora la precisión
de las previsiones de demanda y
generación renovables.

Simulación de escenarios

Se pueden simular múltiples escenarios basados en diversas variables, ayudando a evaluar riesgos y oportunidades antes de tomar decisiones.

Optimización

Asignar de la forma más eficiente los recursos disponibles, anticipándote a posibles desequilibrios entre la oferta y la demanda.

Flexibilidad dinámica

Identifica y ejecuta ajustes en **tiempo**real para equilibrar la oferta y la
demanda, especialmente durante
picos de carga.

¿Dónde se pueden aplicar?

Sistemas insulares

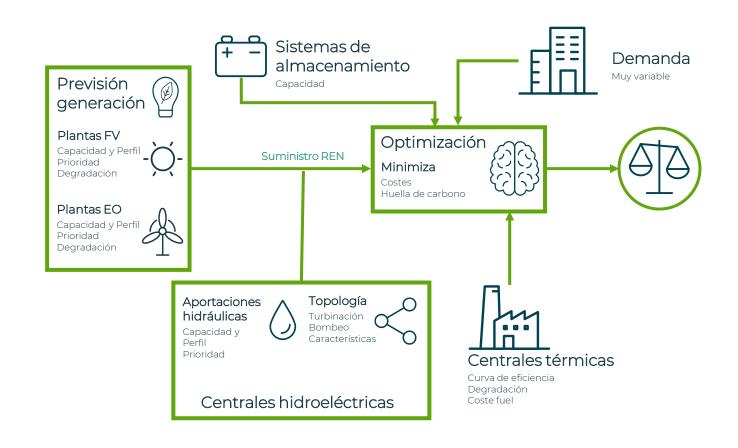
Características

Autonomía energética

Falta de interconexión

Elevado margen de reserva

Alta flexibilidad en la demanda



Modular y adaptable a cualquier sistema

Modelos de IA y expertos para previsiones

Modelo de optimización para minimizar costos

¿Dónde se pueden aplicar?

Sistemas insulares

Sistemas híbridos no insulares

Características

Interconexión con otros sistemas

Mayor diversidad de fuentes de energía

Mercados para ajustar los desbalances

Uso optimizado de los sistemas de almacenamiento


Solución

Escenarios probabilísticos de precio y producción

Modelo de optimización estocástico

Modelo metaheurístico en tiempo real

Las claves para la transformación mediante IA

Claves para maximizar el impacto empresarial de la IA

Gobierno de la base de conocimiento (los datos)

Experiencia combinada en tecnología y negocios

Gobierno de la IA

Privacidad y seguridad

Fiabilidad y explicabilidad

Selección y combinación de herramientas de IA

iGRACIAS! XIINSAIT

