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Abstract. The recent massive deployment of onshore wind farms has caused controversy
to arise mainly around the issues of land occupation, noise and visual pollution and impact
on wildlife. Fixed offshore turbines, albeit beneficial in those aspects, become economically
unfeasible when installed far away from coastlines. The possibility of installing floating offshore
wind turbines is currently hindered by their excessive operation and maintenance costs. We
have developed a comprehensive model to help companies plan their operations in advance by
detecting failure in mooring lines in almost real time using supervised deep learning techniques.
Given the lack of real data, we have coupled numerical methods and OpenFAST simulations
to build a dataset containing the displacements and rotations of a turbine’s floating platform
across all directions. These time series and their corresponding frequency spectra are used
to obtain a set of key statistical parameters, including means and standard deviations, peak
frequencies, and several relevant momenta. We have designed and trained a Deep Neural
Network to understand and distinguish amongst a series of common failure modes for mooring
lines considering a range of metocean and structural conditions. We have obtained promising
results when monitoring severe changes in the line’s mass and damping using short time spans,
achieving a 95.7% validation accuracy when detecting severe biofouling failure.

1. Introduction
The rapid development of cost-effective, green forms of energy is one of humanity’s main assets
in the fight for environmental conservation. In particular, wind power systems play a huge role in
the current scenario. Controversy, however, has recently arisen following the worldwide massive
installation of onshore wind turbines, mainly around issues such as land occupation, impact
on wildlife and noise and visual pollution. That is one of the many reasons for which research
has turned its focus towards offshore wind rather than onshore wind. Fixed offshore turbines
are already being deployed all around the world but, despite their environmental benefits, their
installation costs increase exponentially when moving further away into the seas, as seabed depth
escalates. Floating Offshore Wind Turbines (FOWT), albeit more affordable in deeper waters
than their fixed counterparts, are still economically unfeasible due to their excessive Operation
and Maintenance (O&M) costs. In fact, Figure 1 suggests O&M accounts for approximately a
third of the total costs associated to a floating wind project [1].
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Figure 1. Simplified cost breakdown of a floating offshore wind project [1].

Cost optimisation is one of the main reasons for which Structural Health Monitoring (SHM)
techniques are used in industry. This paper applies the notion of spectral analysis, whose first
implementation for SHM purposes dates back to the 1960s, when Lifshitz and Rotem [2] observed
dynamic modulus variations under vibrating loads to detect damage in composite materials.
This technique has ever since then been implemented for an extensive range of engineering
disciplines, including amongst others the aerospace and civil industries [3]. This condition-based
monitoring approach has been widely applied to floating oil platforms [4]. In fact, Prislin and
Maroju [5] implemented a machine learning model to evaluate the integrity of mooring systems
for oil platforms. Over the past few years, researchers have focused on the concept of Failure
Modes and Effects Analysis (FMEA) to establish strategic criteria for maintenance operations
by relating the frequency of different forms of damage with their corresponding economic impact
[6, 7].

The world is currently turning its eyes towards big data and artificial intelligence, and
wind power research is no exception. As the ever-increasing computational resources allow
for previously inconceivable calculations, researchers are nowadays implementing deep learning
algorithms to detect damages in different components for wind systems [8]. Coupling deep neural
networks and vibration-based fundamentals for the structural health monitoring of floating wind
turbine mooring lines nonetheless constitutes a complete innovation in the field. Our research
applies some of the concepts introduced by Li et al. [9], who presented a model to recreate
the response of a floating platform under different mooring configurations; and Jaiswal and
Ruskin [10], who implemented computer vision techniques to detect floating vessel mooring
failure. Martinez-Luengo et al. [11] and Joshuva et al. [12] have extensively reviewed other
methods applied for O&M cost minimisation purposes, including for instance thermal imaging
and acoustic emission monitoring.

This research aims at extending the work presented by Gorostidi and Nava [13] by developing
an AI-based algorithm to predict failure in FOWT mooring lines. From the displacements and
rotations of the turbine’s platform, a series of key modal parameters is identified and fed into a
deep learning structure [14], which is ultimately able to discern whether a mooring line is failing
or not, and what kind of damage is affecting its performance. This approach is intended to
help companies plan their operations in advance, and could potentially reduce their total costs
substantially by keeping unnecessary commissions and sensorization costs to a minimum.

The main limitations of the method we use arise from the fact that floating offshore wind
turbines are still not mass-produced as of today, and thus real data is very limited. Instead, we
carry out numerical simulations to recreate the external and structural characteristics affecting a
turbine’s behaviour as truthfully as possible, but the model’s performance under real conditions
still remains a challenge. Furthermore, we have built a neural network using a classification
approach. As with any supervised learning technique, this method relies on establishing labels
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for the potential forms and severities of damage. The main advantage of these models with
respect to unsupervised algorithms is the fact that we are able to determine what kind of
damage is affecting a turbine’s performance rather than just detecting anomalies. However,
classifying failure implies imposing a binary choice of whether a mooring system is damaged or
not. This poses the challenge of setting a discrete threshold for the minimum damage severity at
which repairs should be performed. A set of intermediate labels should therefore be simulated
and coupled with a compatible reliability model so as to estimate at what point in time a given
mooring system will transition from an intermediate state to a severely damaged one.

2. Methodology
We divide the method’s workflow into two phases: simulation and training. The former includes
all preprocessing, simulation and data postprocessing operations that end once the training and
validation datasets are generated. This step is necessary given the current scarcity of real data.
In the training phase we design and train a Deep Neural Network using said datasets to build
an effective algorithm for the prediction of mooring line damage. A short overview of the initial
stages of the project is given to introduce the studied scenario and some of the model’s key
variables.

2.1. Preliminary approach
The introductory work published in [13] presented a simple 1-DOF differential equation, which
we used to recreate the dynamics of a generic FOWT platform.

M · ẍ+ C · ẋ+K3 · x3 +K1 · x+K0 = Fwave (HS , TP , t) + Fdrift

(
H2

S

)
+ Fwind (V ) . (1)

In this instance we only studied the platform’s surge. A set of ranging metocean parameters,
including wind velocity and the waves’ significant height and peak period, was defined to create
an extensive set of training data. This contained a collection of synthetic statistics extracted
from the platform’s response in both time and frequency domains. A series of alterations
to the system’s original structural characteristics was defined to simulate a range of failing
configurations. These included biofouling damage to the mooring lines, resulting in increased
mass and damping coefficients, which eventually yielded longer periods and hence lower peak
frequencies; pitting wear, and anchoring point displacements, which caused different effects on
the line’s non-linear stiffness coefficients.

2.2. Simulation and dataset generation
Our research currently extends this idea by considering not only the longitudinal displacements of
the floating platform, but a fully comprehensive 6-DOF system in which all transverse effects and
rotations are included. We therefore consider six time series, from which we calculate and extract
statistics such as means and standard deviations, peak frequencies and some relevant momenta.
These parameters are ultimately the inputs to the implemented deep learning algorithm, which
then infers whether the mooring lines are damaged or not, and if so, what causes might be
affecting their performance. Figure 2 presents a simplified diagram of the method’s workflow.

We have generated the training and validation datasets by using NREL’s open-source wind
turbine simulation tool OpenFAST [15] to perform simulations on the semisubmersible floating
system depicted in Figure 3(a), developed within the DeepCwind project [16]. Considering a
simple catenary mooring system, we computed a series of scenarios combining both metocean and
structural parameters by rewriting the modules shown in Figure 3(b). In particular, InflowWind
was modified to adjust the horizontal, steady wind velocity. HydroDyn was used to generate the
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Figure 2. Schematic representation of the method’s workflow, including simulation and data
extraction and visualisation processes.

time domain hydrodynamics behaviour of the platform in different sea states, characterised by
the significant wave height, HS , and peak period, TP . The structural properties of the mooring
lines, e.g. mass, damping and stiffness, were modified using MoorDyn.

Thanks to the ElastoDyn module, we simulated the time evolution of the platform’s
displacements across all six degrees of freedom. Their respective frequency spectra were
calculated using a postprocessing script. From these, the desired datasets were built, containing
the statistics shown in Table 1. The implemented network is designed to be agnostic to external
factors. This means that wind and wave characteristics are dropped out of the dataset before
training, and are only included at first for data analysis purposes, e.g. filtering and visualisation.
The result of this is an algorithm capable of predicting FOWT mooring failure without needing
any sensors to describe wind and wave conditions, thus saving even more on measuring costs.
The model is therefore trained using mean, standard deviation, peak frequency and zero-order
momentum of the response for each of the 6 DOFs, hence resulting in 24 total dataset features.

In the end, the aim is for the DNN to identify discrepancies in these modal parameters for
different mooring line health states. To give an oversimplistic example, an unexpectedly heavy
line might cause inertial effects to increase, thus causing the platform to move more slowly than
predicted. This movement is then characterised by longer periods, and hence smaller frequencies.
Once trained, the implemented network should therefore understand and associate lower peak
frequencies to this kind of damage, which could possibly arise from biofouling issues.

2.3. Network design and training
We use supervised deep learning techniques to model this problem by imposing a series of
changes to the mooring line’s structural properties. More specifically, we employ a simple feed-
forward, fully-connected deep neural network following the topology shown in Figure 4. As
stated before, its inputs, denoted by im, are the modal statistics obtained from the floating
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(a)

OpenFAST

NREL5MW

OC4DeepCWind

InflowWind

ElastoDyn

HydroDyn

MoorDyn

(b)

Figure 3. Simulation setup in OpenFAST (a) Sketch of the DeepCwind semisubmersible
floating platform (b) OpenFAST’s default folder structure.

platform’s displacements. The outputs, indicated as pk, are the supplementary probabilities of
the given line being assigned to any of the k labels or, in this case, health status scenarios. The
idea, once the network has been trained, is for one of these probabilities to be as close as possible
to one, with the rest being approximately equal to zero.

The algorithm designed in [13] contained all the damaged configurations shown in Table
2. The implemented 6-DOF model considers fully-functioning mooring lines, as well as those
affected by biofouling issues, that is, with increased mass due to the undesired attachment of

Table 1. Parameters stored in the training and validation datasets. Significant wave height
ranged from 4 to 10 m. Peak wave period, from 5 to 15 s. Wind speed varied from 2 to 15 m/s.

Symbol Parameter

x̄r Response mean
σr Response standard deviation
fP Peak frequency
m0 Zero-order momentum

HS Significant wave height
TP Peak period
V Wind speed

Label Health status label



WindEurope Annual Event 2022
Journal of Physics: Conference Series 2257 (2022) 012008

IOP Publishing
doi:10.1088/1742-6596/2257/1/012008

6

Input layer n hidden layers Output layer

i1

i2

i3

...

...

im−1

im

p1

p2

p3

...

pk

Figure 4. Generic topology
of a four-layer, feed-forward
deep neural network.

marine life. This condition is recreated in OpenFAST by specifying an increment in mass per
unit length inMoorDyn, whose default value is 113.35 kg/m. In this instance, we have considered
a 10% mass increase to constitute severe biofouling failure. The damaged lines therefore have a
mass per unit length of 124.69 kg/m, with all the consequences this causes in the dynamics of
the mooring system.

A total of 3,140 cases were computed from OpenFAST simulations combining different wave
and wind conditions for both undamaged and damaged lines. The obtained signals have
a duration of three hours to mitigate any transient and/or unsteady effects, following the
conclusions obtained in [13]. A dataset containing 2,355 samples, that is, 75% of the total
computed cases, was built to train the network, while the remaining 785 samples were used to
simultaneously validate the model. These validation cases do not affect neither the algorithm’s
training process nor its coefficients, and are only employed to estimate the performance of the
model with respect to unseen data. The implemented neural network was tuned using the
hyperparameter values shown in Table 3, all of which are standard for classification tasks with
only two classes.

Table 2. Simulated damage configurations for the health status of mooring systems for both
the initial and current models.

Condition Definition 1-DOF 6-DOF

Anchoring Displaced mooring line anchor
Biofouling Attached mussels, algae and other marine organisms
Fatigue Damaged links in a mooring line due to wear or fatigue
Undamaged Default mooring line properties



WindEurope Annual Event 2022
Journal of Physics: Conference Series 2257 (2022) 012008

IOP Publishing
doi:10.1088/1742-6596/2257/1/012008

7

Table 3. Hyperameters used in the training stage of the project.

Parameter Definition

Neurons per layer 24, 16, 12, 2
Activation functions ReLU, Softmax
Layer connection Fully-connected layers
Optimiser and learning rate Adam, 0.0001
Cost function Binary cross-entropy
Early-stop criterion and patience Validation loss, 500 epochs
Training epochs 10,000

3. Analysis of Results
We have carried out a series of OpenFAST simulations combining both external conditions and
structural characteristics of a FOWT’s mooring system. The displacements and rotations of the
floating platform have been computed for each case, yielding a set of six time series such as the
one plotted in Figure 5. The unsteady appearance of the signals is caused by the irregular nature
of the waves, which have been computed using a Pierson-Moskowitz spectrum with second-order
mean-drift forces. A predominantly sinusoidal behaviour can be observed for each individual
degree of freedom, thus justifying the use of peak frequencies as a key statistic to include in the
training process. Moreover, it is a positive sign that the patterns presented in all directions and
rotations are consistent with other studies [17].

Looking at the specific values for the displacements of the floating platform, and given the
one-dimensional constraint imposed for both waves and wind, it bodes well that the surge,
shown in Figure 5(a), presents much higher mean and amplitude in comparison to the transverse
movements, sway and heave, displayed in Figure 5(b) and Figure 5(c), respectively.

The previously implemented 1-DOF model was trained obtaining a promising 96% validation
accuracy when severe biofouling and anchor displacement issues were considered [13]. Separate
analyses were carried out on each failure mode individually to estimate the network’s sensitivity
to increasingly severe damage. The most relevant outcome from these studies is the fact that
an approximately 92% accuracy was obtained after a binary classification test between default
mooring lines and 10% heavier ones.

The current status of our research already considers the displacements and rotations of the
turbine’s floating platform across all directions, thus producing much more realistic results. The
evolution of the algorithm’s training and validation processes is shown in Figure 6(a) and Figure
6(b) for loss and accuracy, respectively. A plateau is reached after training the network for
more than 6,000 epochs, yielding a validation accuracy of 95.7%. This is already a significant
improvement from the previously computed results in [13], and is promising considering the
increasing complexity of the data. These outcomes are numerically displayed on Table 4, which
presents a series of standard metrics for classification problems. Precision is a way to measure the
quality of the implemented model by computing the proportion of all the instances identified
as positive, that is, damaged, that are appropriately defined. Recall measures the quantity
of positive cases that the model is able to properly identify. F-Score is a weighted average
of precision and recall, with F1-Score in particular being equal to their harmonic mean. A
comprehensive analysis of the performance of any classification model discusses all of these
metrics, bringing increased attention to either one depending on the nature of the problem.
Recall is more sensitive with respect to false negatives, that is, failing mooring lines being
wrongly identified as undamaged. That is the reason for which we should maximise this over
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Figure 5. Observed displacements and rotations of a floating platform with undamaged
mooring lines under HS = 10 m, TP = 13 s and V = 8 m/s: (a) surge, (b) sway, (c) heave, (d)
roll, (e) pitch and (f) yaw. Sway and yaw have been plotted using a broader window for clarity.
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Figure 6. Evolution of training and validation (a) loss and (b) accuracy as training progresses.

any other metric in our scenario, as low recall would imply underestimating mooring line damage,
thus hindering the model’s potential benefits. The fact that the obtained 97.5% biofouling recall
is the maximum out of all the metrics presented in Table 4 is very positive.

Another common way to illustrate the behaviour of a machine learning model is through the
use of confusion matrices, such as the one shown on Table 5, which presents the algorithm’s
performance in a more intuitive manner. It shows that out of 400 damaged mooring systems
provided by the validation dataset, only 10 have been classified as undamaged. The idea is for
the model to eventually discern among a larger array of labels, thus being able to identify more
kinds of damages.

Table 4. Model performance metrics for the validation set after 10,000 training epochs.

Precision Recall F1-Score

Undamaged 0.973 0.938 0.955
Biofouling 0.942 0.975 0.958

Accuracy 0.957 0.957 0.957

Table 5. Confusion matrix for the validation set after 10,000 training epochs.

Undamaged Biofouling

Undamaged 361 24
Biofouling 10 390
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4. Conclusions
We have developed a deep learning algorithm to predict failure in FOWT mooring lines using
simple measurements. A series of numerical methods and OpenFAST simulations have been
used to generate a database containing modal statistics from short-term displacements and
rotations of a floating turbine’s platform. We have defined a range of external conditions
and structural characteristics to simulate different damaged mooring line configurations. We
have designed and trained a deep neural network to so far detect biofouling failure in almost
real time. The computed displacements show consistency and match those obtained in similar
studies. The implemented network reaches over 95% accuracy when predicting moderate-to-high
biofouling damage to a turbine’s mooring lines. This spectral analysis could reduce O&M costs
massively, thus increasing overall profitability, as only a few key sensors would be needed to
remotely estimate the future of a mooring system’s health status. The implemented method
could potentially be extended to other subsystems of a floating offshore wind turbine, such as
its blades, gearbox or tower.
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